Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2003 Feb 11;42(5):1283-91.

Hepatocyte apoB-containing lipoprotein secretion is decreased by the grapefruit flavonoid, naringenin, via inhibition of MTP-mediated microsomal triglyceride accumulation.

Author information

  • 1The Department of Medicine, The University of Western Ontario, London, Ontario, Canada.

Abstract

Naringenin, the principal flavonoid in grapefruit, reduces plasma lipids in vivo and inhibits apoB secretion, cholesterol esterification, and MTP activity in HepG2 human hepatoma cells. Although naringenin inhibits ACAT, we recently demonstrated that CE availability in the microsomal lumen does not regulate apoB secretion in HepG2 cells. We therefore hypothesized that inhibition of TG accumulation in the ER lumen, secondary to MTP inhibition, is the primary mechanism whereby naringenin blocks lipidation and subsequent secretion of apoB. Multicompartmental modeling of pulse-chase studies was used to compare cellular apoB kinetics in the presence of either naringenin or the specific MTP inhibitor, BMS-197636. At concentrations that reduced apoB secretion by 50%, both compounds selectively enhanced degradation via a kinetically defined, rapid, proteasomal pathway to the same extent. Subcellular fractionation experiments revealed that naringenin and BMS-197636 reduced accumulation of newly synthesized TG in the microsomal lumen by 48% and 54%, respectively. Newly synthesized CE accumulation in the lumen was reduced by 80% and 33% with naringenin and BMS-197636, respectively, demonstrating for the first time that MTP is involved in CE accumulation in the microsomal lumen. Reduced TG availability at this initial site of lipoprotein assembly was associated with significant reductions in the secretion of apoB-containing lipoproteins. Both naringenin and BMS-197636 were most effective in reducing secretion of IDL and LDL, but also inhibited secretion of apoB-containing HDL-sized particles. Furthermore, in McA-RH7777-derived cell lines, naringenin reduced secretion of hapoB72 and hapoB100, which require significant assembly with lipid to be secreted, but did not reduce secretion of hapoB17, hapoB23, and hapoB48, which require only minimal lipidation. Taken together, our results indicate that naringenin inhibits the lipidation and subsequent secretion of apoB-containing lipoproteins primarily by limiting the accumulation of TG in the ER lumen, secondary to MTP inhibition.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk