Send to

Choose Destination
See comment in PubMed Commons below
Can J Physiol Pharmacol. 2002 Dec;80(12):1125-31.

Cardiovascular effects of 1,8-cineole, a terpenoid oxide present in many plant essential oils, in normotensive rats.

Author information

  • 1Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil.


The cardiovascular effects of i.v. treatment with 1,8-cineole, a monoterpenic oxide present in many plant essential oils, were investigated in normotensive rats. This study examined (i) whether the autonomic nervous system is involved in the mediation of 1,8-cineole-induced changes in mean aortic pressure (MAP) and heart rate (HR) and (ii) whether the hypotensive effects of 1,8-cineole could result from its vasodilatory effects directly upon vascular smooth muscle. In both pentobarbital-anesthetized and conscious, freely moving rats, bolus injections of 1,8-cineole (0.3-10 mg/kg, i.v.) elicited similar and dose-dependent decreases in MAP. Concomitantly, 1,8-cineole significantly decreased HR only at the highest dose (10 mg/kg). Pretreatment of anesthetized rats with bilateral vagotomy significantly reduced the bradycardic responses to 1,8-cineole (10 mg/kg) without affecting hypotension. In conscious rats, i.v. pretreatment with methylatropine (1 mg/kg), atenolol (1.5 mg/kg), or hexamethonium (30 mg/kg) had no significant effects on the 1,8-cineole-induced hypotension, while bradycardic responses to 1,8-cineole (10 mg/kg) were significantly reduced by methylatropine. In rat isolated thoracic aorta preparations, 1,8-cineole (0.006-2.6 mM) induced a concentration-dependent reduction of the contraction induced by potassium (60 mM). This is the first physiological evidence that i.v. treatment with 1,8-cineole in either anesthetized or conscious rats elicits hypotension; this effect seems related to an active vascular relaxation rather than withdrawal of sympathetic tone.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk