Send to

Choose Destination
See comment in PubMed Commons below
Nature. 2003 Jan 30;421(6922):513-7.

A colloidal model system with an interaction tunable from hard sphere to soft and dipolar.

Author information

  • 1Soft Condensed Matter, Debye Institute, Utrecht University, Padualaan 5, 3584CC Utrecht, The Netherlands.


Monodisperse colloidal suspensions of micrometre-sized spheres are playing an increasingly important role as model systems to study, in real space, a variety of phenomena in condensed matter physics--such as glass transitions and crystal nucleation. But to date, no quantitative real-space studies have been performed on crystal melting, or have investigated systems with long-range repulsive potentials. Here we demonstrate a charge- and sterically stabilized colloidal suspension--poly(methyl methacrylate) spheres in a mixture of cycloheptyl (or cyclohexyl) bromide and decalin--where both the repulsive range and the anisotropy of the interparticle interaction potential can be controlled. This combination of two independent tuning parameters gives rise to a rich phase behaviour, with several unusual colloidal (liquid) crystalline phases, which we explore in real space by confocal microscopy. The softness of the interaction is tuned in this colloidal suspension by varying the solvent salt concentration; the anisotropic (dipolar) contribution to the interaction potential can be independently controlled with an external electric field ranging from a small perturbation to the point where it completely determines the phase behaviour. We also demonstrate that the electric field can be used as a pseudo-thermodynamic temperature switch to enable real-space studies of melting transitions. We expect studies of this colloidal model system to contribute to our understanding of, for example, electro- and magneto-rheological fluids.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk