Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2003 Feb 7;326(1):65-76.

Stepwise manipulation of DNA specificity in Flp recombinase: progressively adapting Flp to individual and combinatorial mutations in its target site.

Author information

  • 1Section of Molecular Genetics and Microbiology, University of Texas, Austin, TX 78712-1095, USA. voziyanov@mail.utexas.edu

Abstract

The Flp protein from Saccharomyces cerevisiae is one of the site-specific tyrosine family recombinases that are used widely in genomic engineering. As a first step towards mediating directed DNA rearrangements at non-native Flp recombination targets (mFRTs), we have evolved three separate groups of Flp variants that preferentially act on mFRTs containing substitutions at the first, seventh or both positions of the Flp-binding elements. The variants that recombine the double-mutant mFRT contain a subset of the mutations present in those that are active on the single-mutant mFRTs, plus additional mutations. Specificity for and discrimination between target sites, effected primarily by amino acid residues that contact DNA, can be modulated by those that do not interact with DNA or with a DNA-contacting residue. The degree of modulation can range from relaxed DNA specificity to almost completely altered specificity. Our results suggest that combined DNA shuffling and mutagenesis of libraries of Flp variants active on distinct mFRTs can yield variants that can recombine mFRTs containing combinations of the individual mutations.

PMID:
12547191
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk