Send to:

Choose Destination
See comment in PubMed Commons below
Curr Biol. 2003 Jan 21;13(2):168-72.

Mitotic hyperphosphorylation of the fission yeast SIN scaffold protein cdc11p is regulated by the protein kinase cdc7p.

Author information

  • 1Cell Cycle Control Laboratory, Swiss Institute for Experimental Cancer Research (ISREC), 1066, Epalinges, Switzerland.


The fission yeast septation initiation network (SIN) triggers the onset of septum formation and cytokinesis. SIN proteins signal from the spindle pole body (SPB), to which they bind in a cell cycle-dependent manner, via the scaffold proteins sid4p and cdc11p. cdc11p becomes hyperphosphorylated during anaphase, when the SIN is active. We have investigated the phosphorylation state of cdc11p during mitosis in various mutant backgrounds. We show that association of cdc11p with the spindle pole body is required for its phosphorylation and that ectopic activation of the SIN results in hyperphosphorylation of cdc11p. We demonstrate that mitotic hyperphosphorylation of cdc11p requires the activity of cdc7p and that its dephosphorylation at the end of mitosis requires PP2A-par1p. Furthermore, spindle checkpoint arrest prevents cdc11p hyperphosphorylation. Finally, we show that the septation inhibitor byr4p interacts preferentially with hypophosphorylated cdc11p. We conclude that cdc11p hyperphosphorylation correlates with activation of the SIN and that this may be mediated primarily by cdc7p in vivo.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk