Send to:

Choose Destination
See comment in PubMed Commons below
Biochem J. 2003 May 1;371(Pt 3):857-66.

Stimulation of glycogen synthesis by heat shock in L6 skeletal-muscle cells: regulatory role of site-specific phosphorylation of glycogen-associated protein phosphatase 1.

Author information

  • 1The Diabetes Research Laboratory, Winthrop University Hospital, Mineola, NY 11501, USA.


Recent evidence suggests that glycogen-associated protein phosphatase 1 (PP-1(G)) is essential for basal and exercise-induced glycogen synthesis, which is mediated in part by dephosphorylation and activation of glycogen synthase (GS). In the present study, we examined the potential role of site-specific phosphorylation of PP-1(G) in heat-shock-induced glycogen synthesis. L6 rat skeletal-muscle cells were stably transfected with wild-type PP-1(G) or with PP-1(G) mutants in which site-1 (S1) Ser(48) and site-2 (S2) Ser(67) residues were substituted with Ala. Cells expressing wild-type and PP-1(G) mutants, S1, S2 and S1/S2, were examined for potential alterations in glycogen synthesis after a 60 min heat shock at 45 degrees C, followed by analysis of [(14)C]glucose incorporation into glycogen at 37 degrees C. PP-1(G) S1 mutation caused a 90% increase in glycogen synthesis on heat-shock treatment, whereas the PP-1(G) S2 mutant was not sensitive to heat stress. The S1/S2 double mutant was comparable with wild-type, which showed a 30% increase over basal. Heat-shock-induced glycogen synthesis was accompanied by increased PP-1 and GS activities. The highest activation was observed in S1 mutant. Heat shock also resulted in a rapid and sustained Akt/ glycogen synthase kinase 3 beta (GSK-3 beta) phosphorylation. Wortmannin blocked heat-shock-induced Akt/GSK-3 beta phosphorylation, prevented 2-deoxyglucose uptake and abolished the heat-shock-induced glycogen synthesis. Muscle glycogen levels regulate GS activity and glycogen synthesis and were found to be markedly depleted in S1 mutant on heat-shock treatment, suggesting that PP-1(G) S1 Ser phosphorylation may inhibit glycogen degradation during thermal stimulation, as S1 mutation resulted in excessive glycogen synthesis on heat-shock treatment. In contrast, PP-1(G) S2 Ser phosphorylation may promote glycogen breakdown under stressful conditions. Heat-shock-induced glycogenesis appears to be mediated via phosphoinositide 3-kinase/Akt-dependent GSK-3 beta inactivation as well as phosphoinositide 3-kinase-independent PP-1 activation.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk