Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Cell Sci. 2003 Feb 15;116(Pt 4):701-10.

Krh1p and Krh2p act downstream of the Gpa2p G(alpha) subunit to negatively regulate haploid invasive growth.

Author information

  • 1Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.

Abstract

The yeast G(alpha) subunit Gpa2p and its coupled receptor Gpr1p function in a signaling pathway that is required for the transition to pseudohyphal and invasive growth. A two-hybrid screen using a constitutively active allele of GPA2 identified the KRH1 gene as encoding a potential binding partner of Gpa2p. Strains containing deletions of KRH1 and its homolog KRH2 were hyper-invasive and displayed a high level of expression of FLO11, a gene involved in pseudohyphal and invasive growth. Therefore, KRH1 and KRH2 encode negative regulators of the invasive growth pathway. Cells containing krh1Delta krh2Delta mutations also displayed increased sensitivity to heat shock and decreased sporulation efficiency, indicating that Krh1p and Krh2p regulate multiple processes controlled by the cAMP/PKA pathway. The krh1Delta krh2Delta mutations suppressed the effect of a gpa2Delta mutation on FLO11 expression and eliminated the effect of a constitutively active GPA2 allele on induction of FLO11 and heat shock sensitivity, suggesting that Krh1p and Krh2p act downstream of Gpa2p. The Sch9p kinase was not required for the signal generated by deletion of KRH1 and KRH2; however, the cAMP-dependent kinase Tpk2p was required for generation of this signal. These results support a model in which activation of Gpa2p relieves the inhibition exerted by Krh1p and Krh2p on components of the cAMP/PKA signaling pathway.

PMID:
12538771
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

Miscellaneous

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk