Format

Send to:

Choose Destination
See comment in PubMed Commons below
Eur J Endocrinol. 2003 Jan;148(1):25-30.

A new missense mutation in the growth hormone-releasing hormone receptor gene in familial isolated GH deficiency.

Author information

  • 1Divisions of Pediatric Endocrinology and Endocrinology and The Ilyssa Center for Molecular and Cellular Endocrinology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.

Abstract

OBJECTIVE:

Mutations in the GH-releasing hormone (GHRH) receptor (GHRHR) gene (GHRHR) cause autosomal recessive familial isolated GH deficiency (IGHD). We searched for GHRHR mutations in two siblings with IGHD type IB and a history of parental consanguinity.

DESIGN:

We analyzed peripheral genomic DNA of an index patient. After identifying a novel mutation in the GHRHR, we performed functional studies in order to confirm that the mutation causes receptor malfunction.

METHODS:

The entire GHRHR was analyzed in the index case by denaturing gradient gel electrophoresis. Abnormally migrating bands were isolated and sequenced. The mutated area was then sequenced in all family members whose DNA was available. The newly found mutation was inserted into a GHRHR cDNA. Wild-type and mutant cDNAs were expressed into CHO cells and the cyclic AMP (cAMP) response to GHRH was measured. In order to determine whether the mutant receptor was properly expressed on the cell membrane surface, CHO cells were transfected with wild-type or mutant GHRHR cDNA containing a FLAG epitope tag in the extracellular N-terminus.

RESULTS:

Both patients were homozygous for a new missense mutation in codon 176, corresponding to the second transmembrane domain of the receptor protein that replaces alanine with valine (A176V). The mother and three unaffected siblings were heterozygous for the mutation; DNA from the father was not available. Cells expressing the A176V receptor had a significantly reduced cAMP response to GHRH, despite appropriate expression on the cell surface.

CONCLUSIONS:

We describe two siblings with IGHD due to a new mutation in the GHRHR that disrupts GHRH signaling and leads to GHRH resistance.

PMID:
12534354
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk