Relevance of mitogen activated protein kinase (MAPK) and phosphotidylinositol-3-kinase/protein kinase B (PI3K/PKB) pathways to induction of apoptosis by curcumin in breast cells

Biochem Pharmacol. 2003 Feb 1;65(3):361-76. doi: 10.1016/s0006-2952(02)01517-4.

Abstract

Following observations that curcumin inhibited proliferation (IC(50)=1-5 microM), invasiveness and progression through S/G2/M phases of the cell cycle in the non-tumourigenic HBL100 and tumourigenic MDA-MB-468 human breast cell lines, it was noted that apoptosis was much more pronounced in the tumour line. Therefore, the ability of curcumin to modulate signalling pathways which might contribute to cell survival was investigated. After pre-treatment of cells for 20 min, curcumin (40 microM) inhibited EGF-stimulated phosphorylation of the EGFR in MDA-MB-468 cells and phosphorylation of extracellular signal regulated kinases (ERKs) 1 and 2, as well as ERK activity and levels of nuclear c-fos in both cell lines. At a lower dose (10 microM), it also inhibited the ability of anisomycin to activate JNK, resulting in decreased c-jun phosphorylation, although it did not inhibit JNK activity directly. In contrast, the activation of p38 mitogen activated protein kinase (MAPK) by anisomycin was not inhibited. Curcumin inhibited basal phosphorylation of Akt/protein kinase B (PKB) in both cell lines, but more consistently and to a greater extent in the MDA-MB-468 cells. The MAPK kinase (MKK) inhibitor U0126 (10 microM), while preventing ERK phosphorylation in MDA-MB-468 cells, did not induce apoptosis. The PI3K inhibitor LY294002 (50 microM) inhibited PKB phosphorylation in both cells lines, but only induced apoptosis in the MDA-MB-468 line. These results suggest that while curcumin has several different molecular targets within the MAPK and PI3K/PKB signalling pathways that could contribute to inhibition of proliferation and induction of apoptosis, inhibition of basal activity of Akt/PKB, but not ERK, may facilitate apoptosis in the tumour cell line.

MeSH terms

  • Analysis of Variance
  • Apoptosis*
  • Breast / cytology*
  • Butadienes / pharmacology
  • Cell Division / drug effects
  • Chromones / pharmacology
  • Curcumin / pharmacology*
  • Enzyme Inhibitors / pharmacology
  • ErbB Receptors / antagonists & inhibitors
  • ErbB Receptors / metabolism
  • Humans
  • JNK Mitogen-Activated Protein Kinases
  • Mitogen-Activated Protein Kinases / antagonists & inhibitors
  • Mitogen-Activated Protein Kinases / metabolism*
  • Morpholines / pharmacology
  • Nitriles / pharmacology
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Phosphorylation / drug effects
  • Protein Serine-Threonine Kinases*
  • Proto-Oncogene Proteins / antagonists & inhibitors
  • Proto-Oncogene Proteins / metabolism*
  • Proto-Oncogene Proteins c-akt
  • Signal Transduction / drug effects
  • p38 Mitogen-Activated Protein Kinases

Substances

  • Butadienes
  • Chromones
  • Enzyme Inhibitors
  • Morpholines
  • Nitriles
  • Proto-Oncogene Proteins
  • U 0126
  • 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one
  • ErbB Receptors
  • AKT1 protein, human
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt
  • JNK Mitogen-Activated Protein Kinases
  • Mitogen-Activated Protein Kinases
  • p38 Mitogen-Activated Protein Kinases
  • Curcumin