Format

Send to

Choose Destination
See comment in PubMed Commons below
Environ Sci Technol. 2002 Dec 15;36(24):5399-404.

Bioconcentration of organic chemicals: is a solid-phase microextraction fiber a good surrogate for biota?

Author information

  • 1Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands. H.Leslie@iras.uu.nl

Abstract

When organic chemicals are extracted from a water sample with solid-phase microextraction (SPME) fibers, the resulting concentrations in exposed fibers are proportional to the hydrophobicity of the compounds. This fiber accumulation is analogous to the bioconcentration of chemicals observed in aquatic organisms. The objective of this study was to investigate the prospect of measuring the total concentration in SPME fibers to estimate the total body residue in biota for the purpose of risk assessment. Using larvae of the midge, Chironomus riparius and disposable 15-microm poly(dimethylsiloxane) fibers, we studied the accumulation and accumulation kinetics of a number of narcotic compounds with a range of log K(ow) between 3 and 6. The fibers, which have a larger surface area-to-volume ratio, had consistently higher uptake and elimination rate constants (k1 and k2, respectively) than midge larvae and accumulated the chemicals 5 times faster. Comparison of the relationships of the partition coefficients K(PDMS-water) and K(midge-water) (lipid-normalized) to log K(ow) for all compounds yielded a factor of 28 for translating fiber concentrations to biota concentrations. This factor can be used to estimate internal concentrations in biota for compounds structurally similar to the compounds in this study. The exact chemical domain to which this factor can be applied needs to be defined in future research.

Comment in

PMID:
12521167
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk