Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Pediatr Res. 2003 Jan;53(1):137-42.

The conserved TFLK motif of mammary-associated serum amyloid A3 is responsible for up-regulation of intestinal MUC3 mucin expression in vitro.

Author information

  • 1Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa, Ottawa, Ontario, Canada. dmack@cheo.on.ca


In various mammalian species, an isoform of serum amyloid A is secreted at high concentrations into colostrum. A conserved four-amino-acid motif (TFLK) is contained within the first eight N-terminal amino acid residues of this mammary-associated serum amyloid A isoform 3 (M-SAA3). Peptides derived from the bovine N-terminal amino acid sequence of M-SAA3 were produced and added to cell culture medium of HT29 cells to study the effects on intestinal mucin gene expression. HT29 cells were grown to enhance expression of either MUC2 or MUC3 intestinal mucins. After incubation, total RNA was isolated for Northern blot analyses using MUC2 or MUC3 mucin cDNA probes. Signals were detected by autoradiography with mRNA levels expressed relative to 28S rRNA. The 10-mer peptides containing the intact TFLK-motif or a TFLK 4-mer peptide increased MUC3 mRNA expression compared with control cells (p < 0.05). There was no effect of these peptides on MUC2 mRNA expression. Cells that were incubated with 10-mer N-terminal derived peptides containing a scrambled TFLK motif, with all 10 amino acid residues scrambled or derived from a C-terminal region of M-SAA3, did not show increased MUC3 expression. Inhibition of enteropathogenic Escherichia coli strain E2348/69 adhesion to HT29 cells grown to enhance MUC3 expression was reduced by a similar amount when either peptides containing the intact TFLK motif or probiotic microbes were added to cell culture medium compared with control cells. M-SAA3 is a bioactive peptide secreted into colostrums that can up-regulate mucin expression and thereby may enhance innate protective mechanisms that limit access of deleterious microbes to intestinal mucosal epithelial cells in the postparturition period.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk