Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2003 Jan 10;1609(1):19-27.

Beta-barrel membrane protein folding and structure viewed through the lens of alpha-hemolysin.

Author information

  • 1Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. mm922@columbia.edu

Abstract

The beta-barrel is a transmembrane structural motif commonly encountered in bacterial outer membrane proteins and pore-forming toxins (PFTs). Alpha-hemolysin (alphaHL) is a cytotoxin secreted by Staphylococcus aureus that assembles from a water-soluble monomer to form a membrane-bound heptameric beta-barrel on the surface of susceptible cells, perforating the cell membranes, leading to cell death and lysis. The mechanism of heptamer assembly, which has been studied extensively, occurs in a stepwise manner, and the structures of the initial, monomeric form and final, membrane-embedded pore are known. The toxin's ability to assemble from an aqueous, hydrophilic species to a membrane-inserted oligomer is of interest in understanding the assembly of PFTs in particular and the folding and structure of beta-barrel membrane proteins in general. Here we review the structures of the monomeric and heptamer states of LukF and alphaHL, respectively, the mechanism of toxin assembly, and the relationships between alphaHL and nontoxin beta-barrel membrane proteins.

PMID:
12507754
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk