Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):259-64. Epub 2002 Dec 27.

Positive and negative regulation of APP amyloidogenesis by sumoylation.

Author information

  • 1Scios, Inc., 820 West Maude Avenue, Sunnyvale, CA 94085, USA.

Erratum in

  • Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):9102.

Abstract

Amyloid beta peptide (Abeta) generated from amyloid precursor protein (APP) is central to Alzheimer's disease (AD). Signaling pathways affecting APP amyloidogenesis play critical roles in AD pathogenesis and can be exploited for therapeutic intervention. Here, we show that sumoylation, covalent modification of cellular proteins by small ubiquitin-like modifier (SUMO) proteins, regulates Abeta generation. Increased protein sumoylation resulting from overexpression of SUMO-3 dramatically reduces Abeta production. Conversely, reducing endogenous protein sumoylation with dominant-negative SUMO-3 mutants significantly increases Abeta production. We also show that mutant SUMO-3, K11R, which can only be monomerically conjugated to target proteins, has an opposite effect on Abeta generation to that by SUMO-3, which can form polymeric chains on target proteins. In addition, SUMO-3 immunoreactivity is predominantly detected in neurons in brains from AD, Down's syndrome, and nondemented humans. Therefore, polysumoylation reduces whereas monosumoylation or undersumoylation enhances Abeta generation. These findings provide a regulatory mechanism in APP amyloidogenesis and suggest that components in the sumoylation pathway may be critical in AD onset or progression.

PMID:
12506199
[PubMed - indexed for MEDLINE]
PMCID:
PMC140945
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk