Display Settings:

Format

Send to:

Choose Destination
Am J Epidemiol. 2003 Jan 1;157(1):74-84.

Multiple imputation of baseline data in the cardiovascular health study.

Author information

  • 1Department of Biostatistics, University of Washington, Seattle, WA, USA. arnolda@u.washington.edu

Abstract

Most epidemiologic studies will encounter missing covariate data. Software packages typically used for analyzing data delete any cases with a missing covariate to perform a complete case analysis. The deletion of cases complicates variable selection when different variables are missing on different cases, reduces power, and creates the potential for bias in the resulting estimates. Recently, software has become available for producing multiple imputations of missing data that account for the between-imputation variability. The implementation of the software to impute missing baseline data in the setting of the Cardiovascular Health Study, a large, observational study, is described. Results of exploratory analyses using the imputed data were largely consistent with results using only complete cases, even in a situation where one third of the cases were excluded from the complete case analysis. There were few differences in the exploratory results across three imputations, and the combined results from the multiple imputations were very similar to results from a single imputation. An increase in power was evident and variable selection simplified when using the imputed data sets.

PMID:
12505893
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk