Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2003 Jan 10;325(2):241-7.

The single nuclear lamin of Caenorhabditis elegans forms in vitro stable intermediate filaments and paracrystals with a reduced axial periodicity.

Author information

  • 1Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, Am Fassberg 11, 37077 G├Âttingen, Germany. akarabi1@gwdg.de

Abstract

The lamins of the tunicate Ciona intestinalis and the nematode Caenorhabditis elegans show unusual sequence features when compared to the more than 35 metazoan lamin sequences currently known. We therefore analyzed the in vitro assembly of these two lamins by electron microscopy using chicken lamin B2 as a control. While lamin dimers usually appear as a rod carrying two globules at one end, these globules are absent from Ciona lamin, which lacks the central 105-residue region of the tail domain. The deletion of 14 residues or two heptads from the coiled coil rod domain of the single C.elegans lamin results in a 1.5-nm shortening of the dimer rod. Similarly, the paracrystals assembled from the C.elegans lamin exhibit a 3.1-nm reduction of the true axial repeat compared to that of chicken lamin B2 paracrystals. We speculate that the banding pattern in the C.elegans lamin paracrystals arises from a relative stagger between dimers and/or a positioning of the globular tail domain relative to the central rod that is distinct from that observed in chicken lamin B2 paracrystals. Here we show that a nuclear lamin can assemble in vitro into 10-nm intermediate filaments (IFs). C.elegans lamin in low ionic strength Tris-buffers at a pH of 7.2-7.4 provides a stable population of lamin IFs. Some implications of this filament formation are discussed.

PMID:
12488092
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk