Send to:

Choose Destination
See comment in PubMed Commons below
Phys Med Biol. 2002 Nov 21;47(22):4019-41.

Influence of initial electron beam characteristics on monte carlo calculated absorbed dose distributions for linear accelerator electron beams.

Author information

  • 1Department of Radiation Physics, Lund University Hospital, Sweden.


The least known parameters in a Monte Carlo simulation of a linear accelerator treatment head are often the properties of the initial electron beam directed onto the exit vacuum window. Several initial beams with different spatial fluence distributions, angular divergences and energy spectra have been transported through the geometry of a scattering foil accelerator. The electron beam characteristics (energy spectrum and angular distribution) at the phantom surface and the subsequent relative absorbed dose distribution in a water phantom were calculated. The dose distribution was found to be insensitive to the geometrical properties of the initial beam. Furthermore, the lateral dose profiles are unaffected by the energy spectrum of the initial beam. The effect on the depth-dose curve is negligible if the initial energy spectrum is symmetric (e.g., Gaussian shaped) and its full width at half maximum (FWHM) is less than approximately 10% of the most probable energy. A larger FWHM will decrease the normalized dose gradient, but will not affect the dose in the build-up region. An asymmetric wedge shaped spectrum with a low-energy extension simultaneously increases the dose in the build-up region and decreases the dose gradient. The relationship between the energy spectral width and the normalized dose gradient is, however, smaller than published analytical expressions indicate. Some well-established energy-range relationships were shown to be accurate for most of the initial beams studied. The energy spectrum at the phantom surface was also derived from a measured depth-dose curve through different methods. The extracted spectrum depends on the beam model and the spectral reconstruction algorithm. Even though the depth-dose curve is fairly independent of initial beam characteristics, a correct description of the low-energy tail of the energy spectrum is important to obtain good agreement between measured and Monte Carlo calculated doses in the build-up region.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOP Publishing Ltd.
    Loading ...
    Write to the Help Desk