Send to:

Choose Destination
See comment in PubMed Commons below
Inorg Chem. 2002 Dec 16;41(25):6583-96.

Distal metal effects in cobalt porphyrins related to CcO.

Author information

  • 1Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA.


Cobalt(II) porphyrins were studied to determine the influence of distal site metalation and superstructure upon dioxygen reactivity in active site models of cytochrome c oxidase (CcO). Monometallic, Co(II)(P) complexes when ligated by an axial imidazole react with dioxygen to form reversible Co-superoxide adducts, which were characterized by EPR and resonance Raman (RR). Unexpectedly, certain Co porphyrins with Cu(I) metalated imidazole pickets do not form mu-peroxo Co(III)/Cu(II) products even though the calculated intermetallic distance suggests this is possible. Instead, cobalt-porphyrin-superoxide complexes are obtained with the distal copper remaining as Cu(I). Moreover, distal metals (Cu(I) or Zn(II)) greatly enhance the stability of the dioxygen adduct, such that Co superoxides of bimetallic complexes demonstrate minimal reversibility. The "trapping" of dioxygen by a second metal is attributed to structural and electrostatic changes within the distal pocket upon metalation. EPR evidence suggests that the terminal oxygen in these bimetallic Co-superoxide systems is H-bonded to the NH of an imidazole picket amide linker, which may contribute to enthalpic stabilization of the dioxygen adduct. Stabilization of the dioxygen adduct in these bimetallic systems suggests one possible role for the distal copper in the Fe/Cu bimetallic active site of terminal oxidases, which form a heme-superoxide/copper(I) adduct upon oxygenation.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk