Display Settings:

Format

Send to:

Choose Destination
Oncogene. 2002 Dec 5;21(55):8397-403.

Histone H1(S)-3 phosphorylation in Ha-ras oncogene-transformed mouse fibroblasts.

Author information

  • 1Manitoba Institute of Cell Biology, 675 McDermot Avenue, Winnipeg, Manitoba, R3E 0V9 Canada.

Abstract

Phosphorylation of linker histone H1(S)-3 (previously named H1b) and core histone H3 is elevated in mouse fibroblasts transformed with oncogenes or constitutively active mitogen-activated protein kinase (MAPK) kinase (MEK). H1(S)-3 phosphorylation is the only histone modification known to be dependent upon transcription and replication. Our results show that the increased amounts of phosphorylated H1(S)-3 in the oncogene Ha-ras-transformed mouse fibroblasts was a consequence of an elevated Cdk2 activity rather than the reduced activity of a H1 phosphatase, which our studies suggest is PP1. Induction of oncogenic ras expression results in an increase in H1(S)-3 and H3 phosphorylation. However, in contrast to the phosphorylation of H3, which occurred immediately following the onset of Ras expression, there was a lag of several hours before H1(S)-3 phosphorylation levels increased. We found that there was a transient increase in the levels of p21(cip1), which inhibited the H1 kinase activity of Cdk2. Cdk2 activity and H1(S)-3 phosphorylated levels increased after p21(cip1) levels declined. Our studies suggest that persistent activation of the Ras-MAPK signal transduction pathway in oncogene-transformed cells results in deregulated activity of kinases phosphorylating H3 and H1(S)-3 associated with transcribed genes. The chromatin remodelling actions of these modified histones may result in aberrant gene expression.

PMID:
12466960
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk