Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16279-84. Epub 2002 Dec 2.

Memory-specific temporal profiles of gene expression in the hippocampus.

Author information

  • 1Blanchette Rockefeller Neurosciences Institute, West Virginia University, Rockville, MD 20850 USA. sebi@brni-jhu.org

Abstract

Many experiments in the past have demonstrated the requirement of de novo gene expression during the long-term retention of learning and memory. Although previous studies implicated individual genes or genetic pathways in learning and memory, they did not uncover the collective behaviors or patterns of the genes. We have used genome-scale screening to analyze gene expression during spatial learning of rats in the Morris water maze. Our results show distinct temporal gene expression profiles associated with learning and memory. Exogenous administration of one peptide whose sustained increase during memory retention was implicated by microarray analysis, fibroblast growth factor (FGF)-18, improved spatial learning behavior, suggesting that pharmacological modulation of pathways and targets identified may allow new therapeutic approaches for improving learning and memory. Results of this study also suggest that while learning and physical activity involve common groups of genes, the behavior of learning and memory emerges from unique patterns of gene expression across time.

PMID:
12461180
[PubMed - indexed for MEDLINE]
PMCID:
PMC138602
Free PMC Article

Images from this publication.See all images (1)Free text

Fig. 1.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk