Send to

Choose Destination
See comment in PubMed Commons below
J Cell Sci. 2003 Jan 1;116(Pt 1):81-8.

Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells.

Author information

  • 1Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.


Free oxygen radicals are an irrefutable component of life, underlying important biochemical and physiological phenomena in animals. Here it is shown that free oxygen radicals activate plasma membrane Ca(2+)- and K(+)-permeable conductances in Arabidopsis root cell protoplasts, mediating Ca(2+) influx and K(+) efflux, respectively. Free oxygen radicals generate increases in cytosolic Ca(2+) mediated by a novel population of nonselective cation channels that differ in selectivity and pharmacology from those involved in toxic Na(+) influx. Analysis of the free oxygen radical-activated K(+) conductance showed its similarity to the Arabidopsis root K(+) outward rectifier. Significantly larger channel activation was found in cells responsible for perceiving environmental signals and undergoing elongation. Quenching root free oxygen radicals inhibited root elongation, confirming the role of radical-activated Ca(2+) influx in cell growth. Net free oxygen radical-stimulated Ca(2+) influx and K(+) efflux were observed in root cells of monocots, dicots, C3 and C4 plants, suggesting conserved mechanisms and functions. In conclusion, two functions for free oxygen radical cation channel activation are proposed: initialization/amplification of stress signals and control of cell elongation in root growth.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk