Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Water Res. 2002 Nov;36(19):4830-8.

Determination of caffeine as a tracer of sewage effluent in natural waters by on-line solid-phase extraction and liquid chromatography with diode-array detection.

Author information

  • 1CSIRO Land and Water, Adelaide Laboratory, Australia. zuliang.chen@csiro.au

Abstract

A new liquid chromatographic (LC) method with automated on-line solid phase extraction was developed to determine caffeine at sub-microgram per litre concentrations in waters. The filtered sample was pre-concentrated in a pre-column, which was backwashed with acidic water at pH of 2.70. The concentrated caffeine was separated using a C18 column with a gradient of water-acetonitrile and detected by diode array detection (DAD) at 210 nm. Four different pre-columns: C18, PRP-1, PLRP-s and Env were evaluated for the on-line solid phase extraction of caffeine. The PLRP-s pre-column allowed the enrichment of up to 100 mL of environmental water sample with highest recovery. The procedure was validated by recovery experiments in water spiked at 0.5 1.0 and 4.0 microg/L. Average recoveries were between 92.1 +/- 5.2% and 97.8 +/- 2.6%. Detection limits as low as 0.1 microg/L from 50 ml of sample were achieved. The proposed method has the advantages of higher reliability and sensitivity, simpler sample preparation and shorter analysis time in comparison with off-line solid-phase extraction. The utility of the method was demonstrated at two field sites: Bolivar and Halls Head (Australia). At Bolivar, the treatment process included 6-week lagoon storage which is believed to have attenuated caffeine, and thus limited its use as an environmental tracer of reclaimed water. At the Halls Head site, where the storage period is shorter, caffeine was detected in both the treated sewage effluent and in groundwater near ponds where the reclaimed water is at similar concentrations. These results suggest that the environmental conditions under which caffeine is conservative require better definition.

PMID:
12448526
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk