Dependence of gonadotropin-releasing hormone-induced neuronal MAPK signaling on epidermal growth factor receptor transactivation

J Biol Chem. 2003 Jan 31;278(5):2866-75. doi: 10.1074/jbc.M208783200. Epub 2002 Nov 21.

Abstract

The hypothalamic decapeptide, gonadotropin-releasing hormone (GnRH), utilizes multiple signaling pathways to activate extracellularly regulated mitogen-activated protein kinases (ERK1/2) in normal and immortalized pituitary gonadotrophs and transfected cells expressing the GnRH receptor. In immortalized hypothalamic GnRH neurons (GT1-7 cells), which also express GnRH receptors, GnRH, epidermal growth factor (EGF), and phorbol 12-myristate 13-acetate (PMA) caused marked phosphorylation of ERK1/2. This action of GnRH and PMA, but not that of EGF, was primarily dependent on activation of protein kinase C (PKC), and the ERK1/2 responses to all three agents were abolished by the selective EGF receptor kinase inhibitor, AG1478. Consistent with this, both GnRH and EGF increased tyrosine phosphorylation of the EGF receptor. GnRH and PMA, but not EGF, caused rapid phosphorylation of the proline-rich tyrosine kinase, Pyk2, at Tyr(402). This was reduced by Ca(2+) chelation and inhibition of PKC, but not by AG1478. GnRH stimulation caused translocation of PKC alpha and -epsilon to the cell membrane and enhanced the association of Src with PKC alpha and PKC epsilon, Pyk2, and the EGF receptor. The Src inhibitor, PP2, the C-terminal Src kinase (Csk), and dominant-negative Pyk2 attenuated ERK1/2 activation by GnRH and PMA but not by EGF. These findings indicate that Src and Pyk2 act upstream of the EGF receptor to mediate its transactivation, which is essential for GnRH-induced ERK1/2 phosphorylation in hypothalamic GnRH neurons.

MeSH terms

  • Cell Line
  • Culture Media, Serum-Free
  • Enzyme Activation
  • Epidermal Growth Factor / pharmacology
  • ErbB Receptors / genetics*
  • Gonadotropin-Releasing Hormone / pharmacology*
  • Kinetics
  • MAP Kinase Signaling System / drug effects
  • MAP Kinase Signaling System / physiology*
  • Mitogen-Activated Protein Kinase 1 / metabolism
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases / metabolism
  • Neurons / physiology*
  • Phosphorylation
  • Protein Kinase C / metabolism
  • Protein Kinase C-alpha
  • Tetradecanoylphorbol Acetate / pharmacology
  • Transcriptional Activation

Substances

  • Culture Media, Serum-Free
  • Gonadotropin-Releasing Hormone
  • Epidermal Growth Factor
  • ErbB Receptors
  • Protein Kinase C
  • Protein Kinase C-alpha
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases
  • Tetradecanoylphorbol Acetate