Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2003 Jan 31;278(5):2853-8. Epub 2002 Nov 19.

Regulation of leucine-stimulated insulin secretion and glutamine metabolism in isolated rat islets.

Author information

  • 1Division of Endocrinology, Children's Hospital of Philadelphia, Pennsylvania 19104, USA.

Abstract

Glutamate dehydrogenase (GDH) is regulated by both positive (leucine and ADP) and negative (GTP and ATP) allosteric factors. We hypothesized that the phosphate potential of beta-cells regulates the sensitivity of leucine stimulation. These predictions were tested by measuring leucine-stimulated insulin secretion in perifused rat islets following glucose depletion and by tracing the nitrogen flux of [2-(15)N]glutamine using stable isotope techniques. The sensitivity of leucine stimulation was enhanced by long time (120-min) energy depletion and inhibited by glucose pretreatment. After limited 50-min glucose depletion, leucine, not alpha-ketoisocaproate, failed to stimulate insulin release. beta-Cells sensitivity to leucine is therefore proposed to be a function of GDH activation. Leucine increased the flux through GDH 3-fold compared with controls while causing insulin release. High glucose inhibited flux through both glutaminase and GDH, and leucine was unable to override this inhibition. These results clearly show that leucine induced the secretion of insulin by augmenting glutaminolysis through activating glutaminase and GDH. Glucose regulates beta-cell sensitivity to leucine by elevating the ratio of ATP and GTP to ADP and P(i) and thereby decreasing the flux through GDH and glutaminase. These mechanisms provide an explanation for hypoglycemia caused by mutations of GDH in children.

PMID:
12444083
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk