Format

Send to:

Choose Destination
See comment in PubMed Commons below
Development. 2003 Jan;130(1):71-83.

A single cdk inhibitor, p27Xic1, functions beyond cell cycle regulation to promote muscle differentiation in Xenopus.

Author information

  • 1Department of Oncology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK.

Abstract

The molecular basis of the antagonism between cellular proliferation and differentiation is poorly understood. We have investigated the role of the cyclin-dependent kinase inhibitor p27(Xic1) in the co-ordination of cell cycle exit and differentiation during early myogenesis in vivo using Xenopus embryos. In this report, we demonstrate that p27(Xic1) is highly expressed in the developing myotome, that ablation of p27(Xic1) protein prevents muscle differentiation and that p27(Xic1) synergizes with the transcription factor MyoD to promote muscle differentiation. Furthermore, the ability of p27(Xic1) to promote myogenesis resides in an N-terminal domain and is separable from its cell cycle regulation function. This data demonstrates that a single cyclin-dependent kinase inhibitor, p27(Xic1), controls in vivo muscle differentiation in Xenopus and that regulation of this process by p27(Xic1) requires activities beyond cell cycle inhibition.

PMID:
12441292
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk