Synthesis and characterization of an isocyanate functionalized polyhedral oligosilsesquioxane and the subsequent formation of an organic-inorganic hybrid polyurethane

J Am Chem Soc. 2002 Nov 27;124(47):13998-9. doi: 10.1021/ja0275921.

Abstract

Organic-inorganic hybrids are an important class of new materials that offer improved thermal and mechanical properties over normal polymers. They may be produced by either the sol-gel route or through the use of inorganic compounds possessing reactive functional groups. Polyhedral oligosilsesquioxanes (POSS) are completely defined molecules of nanoscale dimensions that may be functionalized with reactive groups suitable for the synthesis of new organic-inorganic hybrids. Here we report the synthesis and characterization of a novel POSS possessing eight isocyanate groups via the hydrosilylation of octakis(hydridodimethylsiloxy)octasilsesquioxane (Q8M8H) and m-isopropenyl-alpha,alpha'-dimethylbenzyl isocyanate (m-TMI). The suitability of this new macromer to the synthesis of a organic-hybrids has been explored by forming a new type of highly cross-linked polyurethane elastomer via reaction of the macromer with poly(ethylene glycol) using dibutyltin dilaurate catalyst.