Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2002 Nov 19;41(46):13617-26.

Determining the membrane topology of proteins: insertion pathway of a transmembrane helix of annexin 12.

Author information

  • 1Department of Physiology and Biophysics, University of California, Irvine, California 92697-4560, USA. ladokhin@uci.edu

Abstract

We describe a sensitive method for determining the bilayer topology of single-site cysteine-linked NBD fluorescent labels on membrane proteins. Based upon a method developed for peptides [W. C. Wimley and S. H. White (2000) Biochemistry 39, 161-170], it utilizes a novel fluorescence quencher, lysoUB, comprised of a single acyl chain attached to a UniBlue chromophore. The enhanced sensitivity of the method arises from the brightness of the NBD fluorescence and the quenching efficiency of lysoUB, which is not fluorescent. In the course of validating the method, we examined the insertion topology of the D-E helical region of repeat 2 of annexin 12, known to adopt a transbilayer orientation at mildly acidic pH [Langen et al. (1998) Proc. Natl. Acad. Sci. USA 95, 14060-14065]. In the final membrane-inserted state, an NBD label attached to the single-cysteine mutant D134C was found to be in the outer (cis) leaflet, while the one attached to D162C was found in the trans leaflet. But kinetic measurements of NBD fluorescence suggested the existence of a transient intermediate insertion state whose lifetime could be increased by increasing the fraction of anionic lipids in the vesicles. Indeed, the lifetime could be increased for times sufficient for the completion of lysoUB-NBD topology measurements. Such measurements revealed that the D-E region adopts an interfacial topology in the intermediate state with both ends on the cis side of the membrane, consistent with the general concept of interface-directed membrane insertion of proteins [White et al. (2001) J. Biol. Chem. 276, 32395-32398].

PMID:
12427023
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk