Display Settings:

Format

Send to:

Choose Destination
Biochemistry. 2002 Nov 19;41(46):13507-13.

Radical formation at Tyr39 and Tyr153 following reaction of yeast cytochrome c peroxidase with hydrogen peroxide.

Author information

  • 1Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.

Abstract

The formation of yeast cytochrome c peroxidase (CcP) compound I has been recognized for many years to be associated with formation of two protein-centered radicals. One of these radical sites is located at Trp191 and is directly involved in catalytic oxidation of ferrocytochrome c (Sivaraja, M., Goodin, D. B., Smith, M., Hoffman, B. M. (1989) Science 245, 738-740). The second radical has been proposed to arise from one or more tyrosyl residues of CcP. However, the tyrosyl residue (or residues) capable of forming this radical has not been identified, and the functional role of this radical remains poorly understood. In the present work, this issue has been addressed through the combined use of the spin-trapping reagent 2-methyl-2-nitrosopropane and peptide mapping by electrospray mass spectrometry to identify Tyr39 and Tyr153 as two tyrosyl residues that are capable of forming radical centers upon reaction of CcP with hydrogen peroxide. The implications of this observation to the catalytic mechanism of CcP are addressed with reference to the three-dimensional structure of CcP.

PMID:
12427011
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk