Send to

Choose Destination
See comment in PubMed Commons below
Nat Biotechnol. 2002 Dec;20(12):1228-33. Epub 2002 Nov 11.

Systemically delivered antisense oligomers upregulate gene expression in mouse tissues.

Author information

  • 1Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.


Systemically injected 2'-O-methoxyethyl (2'-O-MOE)-phosphorothioate and PNA-4K oligomers (peptide nucleic acid with four lysines linked at the C terminus) exhibited sequence-specific antisense activity in a number of mouse organs. Morpholino oligomers were less effective, whereas PNA oligomers with only one lysine (PNA-1K) were completely inactive. The latter result indicates that the four-lysine tail is essential for the antisense activity of PNA oligomers in vivo. These results were obtained in a transgenic mouse model designed as a positive readout test for activity, delivery, and distribution of antisense oligomers. In this model, the expressed gene (EGFP-654) encoding enhanced green fluorescence protein (EGFP) is interrupted by an aberrantly spliced mutated intron of the human beta-globin gene. Aberrant splicing of this intron prevented expression of EGFP-654 in all tissues, whereas in tissues and organs that took up a splice site-targeted antisense oligomer, correct splicing was restored and EGFP-654 expression upregulated. The sequence-specific ability of PNA-4K and the 2'-O-MOE oligomers to upregulate EGFP-654 provides strong evidence that systemically delivered, chemically modified oligonucleotides affect gene expression by sequence-specific true antisense activity, validating their application as potential therapeutics.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk