Send to

Choose Destination
See comment in PubMed Commons below
Neural Netw. 2002 Dec;15(10):1157-63.

The V1 -V2-V3 complex: quasiconformal dipole maps in primate striate and extra-striate cortex.

Author information

  • 1Department of Cognitive and Neural Systems, Boston University, MA 02215, USA.


The mapping function w = k log(z + a) is a widely accepted approximation to the topographic structure of primate V1 foveal and parafoveal regions. A better model, at the cost of an additional parameter, captures the full field topographic map in terms of the dipole map function w = k log[(z + a)/(z + b)]. However, neither model describes topographic shear since they are both explicitly complex-analytic or conformal. In this paper, we adopt a simple ansatz for topographic shear in V1, V2, and V3 that assumes that cortical topographic shear is rotational, i.e. a compression along iso-eccentricity contours. We model the constant rotational shear with a quasiconformal mapping, the wedge mapping. Composing this wedge mapping with the dipole mapping provides an approximation to V1, V2, and V3 topographic structure, effectively unifying all three areas into a single V1-V2-V3 complex using five independent parameters. This work represents the first full-field, multi-area, quasiconformal model of striate and extra-striate topographic map structure.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk