Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2002 Nov;17(3):1429-36.

Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water.

Author information

  • 1Department of Chemistry, Washington University, St. Louis, Missouri 63110, USA. victor@wuchem.wustl.edu

Abstract

Myelin loss and axonal damage are both observed in white matter injuries. Each may have significant impact on the long-term disability of patients. Currently, there does not exist a noninvasive biological marker that enables differentiation between myelin and axonal injury. We describe herein the use of magnetic resonance diffusion tensor imaging (DTI) to quantify the effect of dysmyelination on water directional diffusivities in brains of shiverer mice in vivo. The principal diffusion eigenvalues of eight axonal fiber tracts that can be identified with certainty on DTI maps were measured. The water diffusivity perpendicular to axonal fiber tracts, lambda(perpendicular), was significantly higher in shiverer mice compared with age-matched controls, reflecting the lack of myelin and the increased freedom of cross-fiber diffusion in white matter. The water diffusivity parallel to axonal fiber tracts, lambda(parallel), was not different, which is consistent with the presence of intact axons. It is clear that dysmyelination alone does not impact lambda(parallel). The presence of intact axons in the setting of incomplete myelination was confirmed by electron microscopy. Although further validation is still needed, our finding suggests that changes in lambda(perpendicular) and lambda(parallel) may potentially be used to differentiate myelin loss versus axonal injury.

PMID:
12414282
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk