Format

Send to

Choose Destination
See comment in PubMed Commons below
J Comp Neurol. 2002 Dec 2;454(1):15-33.

Origin of the dopaminergic innervation of the central extended amygdala and accumbens shell: a combined retrograde tracing and immunohistochemical study in the rat.

Author information

  • 1Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-900, Brazil.

Abstract

The origin of the dopaminergic innervation of the central extended amygdala (EAc; i.e., the lateral bed nucleus of the stria terminalis [BSTl]-central amygdaloid nucleus [Ce] continuum) and accumbens shell (AcSh) was studied in the rat by combining retrograde transport of Fluoro-Gold (FG) with tyrosine hydroxylase (TH) immunofluorescence. Perikaryal profiles (PP) immunoreactive to FG and to both FG and TH were counted in A8-A14 dopaminergic districts. Our results suggest that dopaminergic inputs to the EAc and AcSh arise from the ventral tegmental area-A10, substantia nigra, pars compacta-A9, and retrorubral nucleus-A8 groups as well as from the dorsal raphe nucleus and periaqueductal gray substance, housing the dorsocaudal part of A10 group (A10dc). Quantitative estimates reveal that the A10dc group contains approximately half of the total number of FG/TH double-labeled PP projecting to Ce and BSTl. By using an anti-dopamine serum, DR/PAG projections to Ce were confirmed to be in part dopaminergic. In contrast, modest numbers of FG/TH double-labeled PP were seen in the A10dc group after injections in the sublenticular extended amygdala, interstitial nucleus of the posterior limb of the anterior commissure or AcSh. Ventral mesencephalic projections to the EAc display a crude mediolateral topographic organization, whereas those to the AcSh are topographically organized along a mediolateral and an inverted dorsoventral dimension. The diencephalic dopaminergic groups do not innervate the EAc or AcSh, except for the periventricular gray-A11 which sends light dopaminergic projections to Ce and BSTl. Overall, the present results provide additional details on the organization of the mesolimbic dopaminergic system that critically controls behavioral responsiveness to salient environmental stimuli.

Copyright 2002 Wiley-Liss, Inc.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk