Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):14913-8. Epub 2002 Oct 28.

Coordinate regulation of energy transduction modules in Halobacterium sp. analyzed by a global systems approach.

Author information

  • 1Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103-8904, USA. nbaliga@systemsbiology.org

Abstract

The extremely halophilic archaeon Halobacterium NRC-1 can switch from aerobic energy production (energy from organic compounds) to anaerobic phototrophy (energy from light) by induction of purple membrane biogenesis. The purple membrane is made up of multiple copies of a 1:1 complex of bacterioopsin (Bop) and retinal called bacteriorhodopsin that functions as a light-driven proton pump. A light- and redox-sensing transcription regulator, Bat, regulates critical genes encoding the biogenesis of the purple membrane. To better understand the regulatory network underlying this physiological state, we report a systems approach using global mRNA and protein analyses of four strains of Halobacterium sp.: the wild-type, NRC-1; and three genetically perturbed strains: S9 (bat+), a purple membrane overproducer, and two purple membrane deficient strains, SD23 (a bop knockout) and SD20 (a bat knockout). The integrated DNA microarray and proteomic data reveal the coordinated coregulation of several interconnected biochemical pathways for phototrophy: isoprenoid synthesis, carotenoid synthesis, and bacteriorhodopsin assembly. In phototrophy, the second major biomodule for ATP production, arginine fermentation, is repressed. The primary systems level insight provided by this study is that two major energy production pathways in Halobacterium sp., phototrophy and arginine fermentation, are inversely regulated, presumably to achieve a balance in ATP production under anaerobic conditions.

PMID:
12403819
[PubMed - indexed for MEDLINE]
PMCID:
PMC137519
Free PMC Article

Images from this publication.See all images (5)Free text

Fig 1.
Fig 2.
Fig 3.
Fig 4.
Fig 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central Icon for Faculty of 1000
    Loading ...
    Write to the Help Desk