Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Science. 2002 Nov 29;298(5599):1747-52. Epub 2002 Oct 24.

Corepressor-dependent silencing of chromosomal regions encoding neuronal genes.

Author information

  • 1Howard Hughes Medical Institute (HHMI), Department of Computer Science and Engineering, School of Medicine, University of California, San Diego, 9500 Gilman Drive, Room 345, La Jolla, CA 92093-0648, USA.

Erratum in

  • Science. 2003 Mar 14;299(5613):1663.

Abstract

The molecular mechanisms by which central nervous system-specific genes are expressed only in the nervous system and repressed in other tissues remain a central issue in developmental and regulatory biology. Here, we report that the zinc-finger gene-specific repressor element RE-1 silencing transcription factor/neuronal restricted silencing factor (REST/NRSF) can mediate extraneuronal restriction by imposing either active repression via histone deacetylase recruitment or long-term gene silencing using a distinct functional complex. Silencing of neuronal-specific genes requires the recruitment of an associated corepressor, CoREST, that serves as a functional molecular beacon for the recruitment of molecular machinery that imposes silencing across a chromosomal interval, including transcriptional units that do not themselves contain REST/NRSF response elements.

PMID:
12399542
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances

Publication Types

MeSH Terms

Substances

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk