Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Genetics. 2002 Oct;162(2):851-60.

Population genetics of duplicated disease-defense genes, hm1 and hm2, in maize (Zea mays ssp. mays L.) and its wild ancestor (Zea mays ssp. parviglumis).

Author information

  • 1Department of Ecology and Evolutionary Biology, University of California, Irvine 92697, USA.

Abstract

Plant defense genes are subject to nonneutral evolutionary dynamics. Here we investigate the evolutionary dynamics of the duplicated defense genes hm1 and hm2 in maize and its wild ancestor Zea mays ssp. parviglumis. Both genes have been shown to confer resistance to the fungal pathogen Cochliobolus carbonum race 1, but the effectiveness of resistance differs between loci. The genes also display different population histories. The hm1 locus has the highest nucleotide diversity of any gene yet sampled in the wild ancestor of maize, and it contains a large number of indel polymorphisms. There is no evidence, however, that high diversity in hm1 is a product of nonneutral evolution. In contrast, hm2 has very low nucleotide diversity in the wild ancestor of maize. The distribution of hm2 polymorphic sites is consistent with nonneutral evolution, as indicated by Tajima's D and other neutrality tests. In addition, one hm2 haplotype is more frequent than expected under the equilibrium neutral model, suggesting hitchhiking selection. Both defense genes retain >80% of the level of genetic variation in maize relative to the wild ancestor, and this level is similar to other maize genes that were not subject to artificial selection during domestication.

PMID:
12399395
[PubMed - indexed for MEDLINE]
PMCID:
PMC1462307
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk