Formation of atomic tritium clusters and bose-einstein condensates

Phys Rev Lett. 2002 Oct 14;89(16):163402. doi: 10.1103/PhysRevLett.89.163402. Epub 2002 Sep 30.

Abstract

We present an extensive study of the static and dynamic properties of systems of spin-polarized tritium atoms. In particular, we calculate the two-body |F,m(F)>=|0,0> s-wave scattering length and show that it can be manipulated via a Feshbach resonance at a field strength of about 870 G. Such a resonance might be exploited to make and control a Bose-Einstein condensate of tritium in the |0,0> state. It is further shown that the quartet tritium trimer is the only bound hydrogen isotope and that its single vibrational bound state is a Borromean state. The ground state properties of larger spin-polarized tritium clusters are also presented and compared with those of helium clusters.