Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Am J Physiol Lung Cell Mol Physiol. 2002 Dec;283(6):L1181-9. Epub 2002 Jun 28.

Changes in biophysical and biochemical properties of single bronchial smooth muscle cells from asthmatic subjects.

Author information

  • 1Departments of Physiology and Surgery, Faculty of Medicine, University of Manitoba, Manitoba, Winnipeg R3E 3J7, Canada.

Abstract

Whether contractility of bronchial smooth muscle cells (BSMC) from asthmatic subjects is significantly altered has never been validated. We tested the hypothesis that such BSMC show increased contractility. Cells were isolated from endobronchial biopsies. BSMC shortening was measured under an inverted microscope. Statistically significant increases in maximum shortening capacity (Delta L max) and velocity (Vo) were found in asthmatic BSMC compared with normal cells. Mean Delta L max in asthmatic BSMC was 39.05 +/- 1.99% (SE) of resting cell length compared with 28.6 +/- 1.1% in normal cells; mean Vo was 7.2 +/- 0.8% of resting cell length/s in asthmatic cells and 5.23 +/- 0.46% in normal cells. To investigate the mechanism of the increased contractility, we measured mRNA abundance of smooth muscle types of myosin light chain kinase (smMLCK) and myosin heavy chain. RT-PCR data revealed that smMLCK mRNA was higher in asthmatic BSMC (0.106 +/- 0.021 arbitrary densitometric units, n = 7) than in control cells (0.04 +/- 0.008, n = 11; P < 0.05). Messages for myosin heavy chain isoforms showed no difference. Increased kinase message content is an index of the mechanism for the increased velocity and capacity of shortening we report.

Comment in

PMID:
12388349
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk