Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14578-83. Epub 2002 Oct 16.

Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis.

Author information

  • 1Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA.

Abstract

In view of their perceived chemopreventive activities against hormone-dependent cancers, cardiovascular disease, and postmenopausal ailments, there is considerable interest in engineering plants to contain isoflavone phytoestrogens. However, attempts to date have only resulted in low levels of isoflavone accumulation in non-legumes. Introducing soybean isoflavone synthase (IFS) into Arabidopsis thaliana leads to accumulation of low levels of genistein glycosides. Leaves of wild-type A. thaliana contain high levels of similar conjugates of the flavonols quercetin and kaempferol, which could be increased by threefold on introduction of an alfalfa chalcone isomerase transgene. Levels of genistein were not increased by expressing both IFS and alfalfa chalcone isomerase, but levels of flavonol conjugates were reduced to a greater extent than could be accounted for by flux into isoflavone. Introduction of IFS into the tt6/tt3 double mutant blocked in flavonol, and anthocyanin synthesis resulted in high levels of genistein. The bottleneck for constitutive isoflavone production in Arabidopsis is, therefore, competition for flavanone between IFS and endogenous flavonol synthesis, and the flavonol pathway is reciprocally but disproportionately affected by IFS.

PMID:
12384577
[PubMed - indexed for MEDLINE]
PMCID:
PMC137925
Free PMC Article

Images from this publication.See all images (5)Free text

Fig 1.
Fig 2.
Fig 3.
Fig 4.
Fig 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk