Send to

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 2002 Oct 18;298(1):110-5.

Trichostatin A-histone deacetylase inhibitor with clinical therapeutic potential-is also a selective and potent inhibitor of gelatinase A expression.

Author information

  • 1CIHR Group in Membrane Biology, Department of Medicine, Room 7207, Medical Science Building, University of Toronto, Ont. M5S 1A8, Canada.


Modulation of histone acetylation is currently being explored as a therapeutic strategy in treatment of cancer. Specifically, inhibition of histone deacetylase by trichostatin A (TSA) has been shown to prevent tumorigenesis and metastasis. In the present paper we demonstrate that increased histone acetylation by TSA-treated 3T3 cells decreases mRNA as well as zymographic activity of gelatinase A, a matrix metalloproteinase, which is itself, implicated in tumorigenesis and metastasis. Furthermore, TSA inhibits cytochalasin D-induced activation of gelatinase A, but TSA does not affect other members of the gelatinase A activation complex, MT1-MMP and TIMP-2. Thus, TSA is a selective and potent inhibitor of expression and activation of gelatinase A. This finding not only strengthens the rationale for continuing to investigate the therapeutic utility of TSA in cancer, but also, provides evidence that TSA inhibition of gelatinase A expression and activation can be used as a biological marker to monitor and determine end-points of clinical trials involving TSA.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk