Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Regul Integr Comp Physiol. 2002 Nov;283(5):R1052-60.

Novel mechanism for high-altitude adaptation in hemoglobin of the Andean frog Telmatobius peruvianus.

Author information

  • 1Department of Zoophysiology, University of Aarhus, 131 C. F. Møllers Alle, DK 8000 Aarhus C, Denmark.


In contrast to birds and mammals, no information appears to be available on the molecular adaptations for O(2) transport in high-altitude ectothermic vertebrates. We investigated Hb of the aquatic Andean frog Telmatobius peruvianus from 3,800-m altitude as regards isoform differentiation, sensitivity to allosteric cofactors, and primary structures of the alpha- and beta-chains, and we carried out comparative O(2)-binding measurements on Hb of lowland Xenopus laevis. The three T. peruvianus isoHbs show similar functional properties. The high O(2) affinity of the major component results from an almost complete obliteration of chloride sensitivity, which correlates with two alpha-chain modifications: blockage of the NH(2)-terminal residues and replacement by nonpolar Ala of polar residues Ser and Thr found at position alpha131(H14) in human and X. leavis Hbs, respectively. The data indicate adaptive significance of alpha-chain chloride-binding sites in amphibians, in contrast to human Hb where chloride appears mainly to bind in the cavity between the beta-chains. The findings are discussed in relation to other strategies for high-altitude adaptations in amphibians.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk