Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Dec 13;277(50):48696-707. Epub 2002 Oct 8.

Utilization of a novel recombinant myoglobin fusion protein expression system to characterize the tissue inhibitor of metalloproteinase (TIMP)-4 and TIMP-2 C-terminal domain and tails by mutagenesis. The importance of acidic residues in binding the MMP-2 hemopexin C-domain.

Author information

  • 1Canadian Institute of Health Research Group in Matrix Dynamics and the Department of Oral Biological and Medical Sciences, Faculty of Dentistry, Vancouver, British Columbia V6T 1Z3, Canada.

Abstract

Tissue inhibitor of metalloproteinase (TIMP)-4 binds pro-matrix metalloproteinase (MMP)-2 and efficiently inhibits MT1-MMP, but unlike TIMP-2 neither forms a trimolecular complex nor supports pro-MMP-2 activation. To investigate the structural and functional differences between these two TIMPs, the C-terminal domains (C-TIMP-4 and C-TIMP-2) were expressed independently from their N domains and mutations were introduced into the C-terminal tails. Myoglobin was used as a novel recombinant fusion protein partner because spectroscopic measurement of the heme Soret absorbance at 408 nm readily enabled calculation of the molar equivalent of the red-colored recombinant protein, even in complex protein mixtures. Both C-TIMP-4 and C-TIMP-2 bound pro-MMP-2 and blocked concanavalin A-induced cellular activation of the enzyme. Measurement of k(on) rates revealed that the inhibition of MMP-2 by TIMP-4 is preceded by a C domain docking interaction, but in contrast to TIMP-2, this is not enhanced by a C-terminal tail interaction and so occurs at a slower rate. Indeed, the binding stability of C-TIMP-4 was unaltered by deletion of the C-terminal tail, but replacement with the tail of TIMP-2 increased its affinity for pro-MMP-2 by approximately 2-fold, as did substitution with the TIMP-2 C-terminal tail acidic residues in the tail of C-TIMP-4 (V193E/Q194D). Conversely, substitution of the C-terminal tail of C-TIMP-2 with that of TIMP-4 reduced pro-MMP-2 binding by approximately 75%, as did reduction of its acidic character by mutation to the corresponding TIMP-4 amino acid residues (E192V/D193Q). Together, this shows the importance of Glu(192) and Asp(193) in TIMP-2 binding to pro-MMP-2; the lack of these acidic residues in the TIMP-4 C-terminal tail, which reduces the stability of complex formation with the MMP-2 hemopexin C domain, probably precludes TIMP-4 from supporting the activation of pro-MMP-2.

PMID:
12374789
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk