Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14298-302. Epub 2002 Oct 7.

Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals.

Author information

  • 1Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-0448, USA.

Abstract

Cisplatin is a chemotherapeutic drug used to treat a variety of cancers. Both intrinsic and acquired resistance to cisplatin, as well as toxicity, limit its effectiveness. Molecular mechanisms that underlie cisplatin resistance are poorly understood. Here we demonstrate that deletion of the yeast CTR1 gene, which encodes a high-affinity copper transporter, results in increased cisplatin resistance and reduced intracellular accumulation of cisplatin. Copper, which causes degradation and internalization of Ctr1 protein (Ctr1p), enhances survival of wild-type yeast cells exposed to cisplatin and reduces cellular accumulation of the drug. Cisplatin also causes degradation and delocalization of Ctr1p and interferes with copper uptake in wild-type yeast cells. Mouse cell lines lacking one or both mouse Ctr1 (mCtr1) alleles exhibit increased cisplatin resistance and decreased cisplatin accumulation in parallel with mCtr1 gene dosage. We propose that cisplatin uptake is mediated by the copper transporter Ctr1p in yeast and mammals. The link between Ctr1p and cisplatin transport may explain some cases of cisplatin resistance in humans and suggests ways of modulating sensitivity and toxicity to this important anticancer drug.

Comment in

PMID:
12370430
[PubMed - indexed for MEDLINE]
PMCID:
PMC137878
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk