Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Biotechnol Prog. 2002 Sep-Oct;18(5):1027-32.

Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts.

Author information

  • 1Department of Chemical Engineering, The University of Akron, Akron, Ohio 44325-3906, USA.

Abstract

Improvement of catalytic efficiency of immobilized enzymes via materials engineering was demonstrated through the preparation of bioactive nanofibers. Bioactive polystyrene (PS) nanofibers with a typical diameter of 120 nm were prepared and examined for catalytic efficiency for biotransformations. The nanofibers were produced by electrospinning functionalized PS, followed by the chemical attachment of a model enzyme, alpha-chymotrypsin. The observed enzyme loading as determined by active site titration was up to 1.4% (wt/wt), corresponding to over 27.4% monolayer coverage of the external surface of nanofibers. The apparent hydrolytic activity of the nanofibrous enzyme in aqueous solutions was over 65% of that of the native enzyme, indicating a high catalytic efficiency as compared to other forms of immobilized enzymes. Furthermore, nanofibrous alpha-chymotrypsin exhibited a much-improved nonaqueous activity that was over 3 orders of magnitude higher than that of its native counterpart suspended in organic solvents including hexane and isooctane. It appeared that the covalent binding also improved the enzyme's stability against structural denaturation, such that the half-life of the nanofibrous enzyme in methanol was 18-fold longer than that of the native enzyme.

PMID:
12363353
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk