Effect of training in humans on off- and on-transient oxygen uptake kinetics after severe exhausting intensity runs

Eur J Appl Physiol. 2002 Oct;87(6):496-505. doi: 10.1007/s00421-002-0648-7. Epub 2002 Aug 14.

Abstract

The purpose of this study was to examine the effect of 4 weeks of intense interval-training on the pulmonary off-transient oxygen uptake (V*O2) after running until exhaustion at the same absolute speed. Seven physical education students ran as follows in three maximal tests on a synthetic track (400 m) whilst breathing through a portable, telemetric metabolic analyser: firstly, in an incremental test which determined maximal oxygen uptake (V*O2max), the minimal speed associated with V*O2max (vV*O2max) and the speed at the lactate threshold ( v(LT)). Secondly, in two continuous severe intensity runs at 90% (R90) and 95% (R95) of vV*O2max. After training, the times to exhaustion ( t(lim)) at these two speeds (i.e. the time limits t(lim90) and t(lim95), respectively), were significantly increased at both speeds (+37% and +66% for t(lim90) and t(lim95), P=0.04 and 0.01, respectively) and v(LT) and vV*O2max were increased by 8% and 5%, respectively ( P<0.02). The time constants of the cardio-dynamic added to the metabolic phase (phases I+II) and of the slow phase (phase III) of oxygen kinetics in the on-transient phase decreased significantly after training ( P=0.05). However, the decrease in the time constants of oxygen kinetics in the on-transient phases II and III were not correlated with the improvement in performance (i.e. increase in t(lim)). After training the V*O2 off-transient phase was significantly faster [off-time constant (tau(off)) decreased significantly both after R90 and R95, P=0.03]. This decrease in tau(off) was correlated with the increase in t(lim90) ( r=0.795, P=0.03). The physiological factors best correlated with the increased performance after training were v(LT) for t(lim90) and vV*O2max for t(lim95).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Humans
  • Kinetics
  • Male
  • Models, Biological
  • Oxygen / metabolism
  • Oxygen Consumption / physiology*
  • Physical Endurance / physiology*
  • Running / physiology*

Substances

  • Oxygen