Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2002 Oct 1;22(19):8391-401.

ER-X: a novel, plasma membrane-associated, putative estrogen receptor that is regulated during development and after ischemic brain injury.

Author information

  • 1Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA. cdt2@columbia.edu

Abstract

We showed previously in neocortical explants, derived from developing wild-type and estrogen receptor (ER)-alpha gene-disrupted (ERKO) mice, that both 17alpha- and 17beta-estradiol elicit the rapid and sustained phosphorylation and activation of the mitogen-activated protein kinase (MAPK) isoforms, the extracellular signal-regulated kinases ERK1 and ERK2. We proposed that the ER mediating activation of the MAPK cascade, a signaling pathway important for cell division, neuronal differentiation, and neuronal survival in the developing brain, is neither ER-alpha nor ER-beta but a novel, plasma membrane-associated, putative ER with unique properties. The data presented here provide further evidence that points strongly to the existence of a high-affinity, saturable, 3H-estradiol binding site (K(d), approximately 1.6 nm) in the plasma membrane. Unlike neocortical ER-alpha, which is intranuclear and developmentally regulated, and neocortical ER-beta, which is intranuclear and expressed throughout life, this functional, plasma membrane-associated ER, which we have designated "ER-X," is enriched in caveolar-like microdomains (CLMs) of postnatal, but not adult, wild-type and ERKO neocortical and uterine plasma membranes. We show further that ER-X is functionally distinct from ER-alpha and ER-beta, and that, like ER-alpha, it is re-expressed in the adult brain, after ischemic stroke injury. We also confirmed in a cell-free system that ER-alpha is an inhibitory regulator of ERK activation, as we showed previously in neocortical cultures. Association with CLM complexes positions ER-X uniquely to interact rapidly with kinases of the MAPK cascade and other signaling pathways, providing a novel mechanism for mediation of the influences of estrogen on neuronal differentiation, survival, and plasticity.

PMID:
12351713
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk