Format

Send to:

Choose Destination
See comment in PubMed Commons below
Hepatology. 2002 Oct;36(4 Pt 1):829-39.

Prevention of bile acid-induced apoptosis by betaine in rat liver.

Author information

  • 1Department of Gastroenterology, Hepatology and Infectiology, Medizinische Einrichtungen der Heinrich-Heine Universität, Düsseldorf, Germany.

Abstract

Bile acid-induced apoptosis plays an important role in the pathogenesis of cholestatic liver disease, and its prevention is of therapeutic interest. The effects of betaine were studied on taurolithocholate 3-sulfate (TLCS) and glycochenodeoxycholate (GCDC)-induced apoptosis in rat hepatocytes in vitro and in vivo. Hepatocyte apoptosis, caspase activation, and poly (ADP-ribose) polymerase (PARP) cleavage, which are normally observed in response to both bile acids, were largely prevented after preincubation of hepatocytes with betaine. Betaine uptake was required for this protective effect, which was already observed at betaine concentrations of 1 mmol/L. Betaine did not affect the TLCS-induced membrane trafficking of CD95 and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) receptor 2 to the plasma membrane or the TLCS-induced recruitment of Fas-associated death domain (FADD) and caspase 8 to the CD95 receptor. However, betaine largely prevented cytochrome c release and oxidative stress exerted otherwise by TLCS. Inhibition of caspase 9 strongly blunted TLCS-induced caspase-8 activation. Further betaine did not prevent the TLCS-induced c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (Erk), and p38 mitogen-activated protein kinase (p38(MAPK)) activation or TLCS-induced protein kinase B (PKB) dephosphorylation. The protective betaine effect was insensitive to inhibition of Erks by PD089059, of p38(MAPK) by SB203580, or of phosphatidylinositol 3-kinase (PI3-kinase) by LY294002. Betaine supplementation in the drinking water significantly ameliorated in vivo hepatocyte apoptosis following bile duct ligation. In conclusion, this study identifies betaine as a potent protectant against bile acid-induced apoptosis in vivo and in vitro, and its antiapoptotic action largely resides on an inhibition of the proapoptotic mitochondrial pathway.

PMID:
12297830
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk