Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Math Popul Stud. 1995 Jul;5(3):187-202, 291.

Population forecasting: do simple models outperform complex models?

Abstract

"This paper reviews the growing literature on population forecasting to examine a curious paradox: despite continuing refinements in the specification of models used to represent population dynamics, simple exponential growth models, it is claimed, continue to outperform such more complex models in forecasting exercises. Shrinking a large complex model in order to simplify it typically involves two processes: aggregation and decomposition. Both processes are known to introduce biases into the resulting representations of population dynamics. Thus it is difficult to accept the conclusion that simple models outperform complex models. Moreover, assessments of forecasting performance are notoriously difficult to carry out, because they inevitably depend not only on the models used but also on the particular historical periods selected for examination.... This paper reviews some of the recent debate on the simple versus complex modeling issue and links it to the questions of model bias and distributional momentum impacts." (SUMMARY IN FRE)

excerpt

PMID:
12290946
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk