Send to:

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1994 Oct;106(2):437-445.

Utilization of Amygdalin during Seedling Development of Prunus serotina.

Author information

  • 1Department of Biological Sciences, The University of Iowa, Iowa City, Iowa 52242.


Cotyledons of mature black cherry (Prunus serotina Ehrh.) seeds contain the cyanogenic diglucoside (R)-amygdalin. The levels of amygdalin, its corresponding monoglucoside (R)-prunasin, and the enzymes that metabolize these cyanoglycosides were measured during the course of seedling development. During the first 3 weeks following imbibition, cotyledonary amygdalin levels declined by more than 80%, but free hydrogen cyanide was not released to the atmosphere. Concomitantly, prunasin, which was not present in mature, ungerminated seeds, accumulated in the seedling epicotyls, hypocotyls, and cotyledons to levels approaching 4 [mu]mol per seedling. Whether this prunasin resulted from amygdalin hydrolysis remains unclear, however, because these organs also possess UDPG:mandelonitrile glucosyltransferase, which catalyzes de novo prunasin biosynthesis. The reduction in amygdalin levels was paralleled by declines in the levels of amygdalin hydrolase (AH), prunasin hydrolase (PH), mandelonitrile lyase (MDL), and [beta]-cyanoalanine synthase. At all stages of seedling development, AH and PH were localized by immunocytochemistry within the vascular tissues. In contrast, MDL occurred mostly in the cotyledonary parenchyma cells but was also present in the vascular tissues. Soon after imbibition, AH, PH, and MDL were found within protein bodies but were later detected in vacuoles derived from these organelles.

[PubMed - as supplied by publisher]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk