Send to:

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1994 Jun;105(2):651-657.

Improved Cytoplasmic pH Regulation, Increased Lactate Efflux, and Reduced Cytoplasmic Lactate Levels Are Biochemical Traits Expressed in Root Tips of Whole Maize Seedlings Acclimated to a Low-Oxygen Environment.

Author information

  • 1Department of Biochemistry, University of California, Riverside, California 92521.


We tested the hypothesis (J.-H. Xia and P.H. Saglio [1992] Plant Physiol 100: 40-46) that the enhanced ability of maize (Zea mays) root tips to survive anoxia, elicited by a 4-h exposure to 3% O2 ("acclimation"), is due to less cytoplasmic acidosis early in anoxia. Cytoplasmic pH and fermentation reactions were monitored in excised and intact (attached) maize root tips by simultaneous in vivo 13C- and 31P-NMR spectroscopy. We demonstrate that both excised and intact acclimated root tips have significantly higher cytoplasmic pH values under anoxia. This reduction in cytoplasmic acidosis is greater in intact root tips. Remarkably, cytoplasmic pH does not change when root tips are transferred from 3% O2 to anoxia. The earlier observation of considerable lactate efflux and lowered intracellular lactate in excised, acclimated root tips (ibid.) was extended to intact seedlings. The predominant fermentation end product retained in the cells of acclimated root tips is alanine. We discuss the relationship between cytoplasmic pH and levels of intracellular lactate and alanine in sugar-replete roots, and the role of cytoplasmic pH in determining survival under anoxia.

[PubMed - as supplied by publisher]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk