Send to:

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1993 Dec;103(4):1249-1258.

Ammonium Uptake by Rice Roots (I. Fluxes and Subcellular Distribution of 13NH4+).

Author information

  • 1Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (M.Y.W., M.Y.S., A.D.M.G.).


The time course of 13NH4+ uptake and the distribution of 13NH4+ among plant parts and subcellular compartments was determined for 3-week-old rice (Oryza sativa L. cv M202) plants grown hydroponically in modified Johnson's nutrient solution containing 2,100, or 1000 [mu]M NH4+ (referred to hereafter as G2, G100, or G1000 plants, respectively). At steady state, the influx of 13NH4+ was determined to be 1.31, 5.78, and 10.11 [mu]mol g-1 fresh weight h-1, respectively, for G2, G100, and G1000 plants; efflux was 11, 20, and 29%, respectively, of influx. The NH4+ flux to the vacuole was calculated to be between 1 and 1.4 [mu]mol g-1 fresh weight h-1. By means of 13NH4+ efflux analysis, three kinetically distinct phases (superficial, cell wall, and cytoplasm) were identified, with t1/2 for 13NH4+ exchange of approximately 3 s and 1 and 8 min, respectively. Cytoplasmic [NH4+] was estimated to be 3.72, 20.55, and 38.08 mM for G2, G100, and G1000 plants, respectively. These concentrations were higher than vacuolar [NH4+], yet 72 to 92% of total root NH4+ was located in the vacuole. Distributions of newly absorbed 13NH4+ between plant parts and among the compartments were also examined. During a 30-min period G100 plants metabolized 19% of the influxed 13NH4+. The remainder (81%) was partitioned among the vacuole (20%), cytoplasm (41%), and efflux (20%). Of the metabolized 13N, roughly one-half was translocated to the shoots.

[PubMed - as supplied by publisher]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk