Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Org Chem. 2002 Sep 20;67(19):6788-96.

Nucleic acid related compounds. 116. Nonaqueous diazotization of aminopurine nucleosides. Mechanistic considerations and efficient procedures with tert-butyl nitrite or sodium nitrite.

Author information

  • 1Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-5700, USA.

Abstract

Nonaqueous diazotization-dediazoniation of two types of aminopurine nucleoside derivatives has been investigated. Treatment of 9-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)-2-amino-6-chloropurine (1) with SbCl(3)/CH(2)Cl(2) was examined with benzyltriethylammonium (BTEA) chloride as a soluble halide source and tert-butyl nitrite (TBN) or sodium nitrite as the diazotization reagent. Optimized yields (>80%) of the 2,6-dichloropurine derivative were obtained with SbCl(3). Combinations with SbBr(3)/CH(2)Br(2) gave the 2-bromo-6-chloropurine product (>60%), and SbI(3)/CH(2)I(2)/THF gave the 2-iodo-6-chloropurine derivative (>45%). Antimony trihalide catalysis was highly beneficial. Mixed combinations (SbX(3)/CH(2)X'(2); X/X' = Br/Cl) gave mixtures of 2-(bromo, chloro, and hydro)-6-chloropurine derivatives that were dependent on reaction conditions. Addition of iodoacetic acid (IAA) resulted in diversion of purine radical species into a 2-iodo-6-chloropurine derivative with commensurate loss of other radical-derived products. This allowed evaluation of the efficiency of SbX(3)-promoted cation-derived dediazoniations relative to radical-derived reactions. Efficient conversions of adenosine, 2'-deoxyadenosine, and related adenine nucleosides into 6-halopurine derivatives of current interest were developed with analogous combinations.

PMID:
12227811
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk